Manual for Otolith Removal and Preparation
for Microstructural Examination

David H. Secor
John M. Dean
and
Elisabeth H. Laban

Published by
the Electric Power Research Institute and
the Belle W. Baruch Institute for Marine Biology and Coastal Research
The recent improvements in the estimation of the age and growth of fishes are an exciting technological breakthrough. Accurate age-specific growth rates, variability in growth rates, and mortality rates for larvae and juveniles in field samples can now be obtained by analyzing the daily increments in the otoliths from individuals. These rates are needed to estimate cohort-specific growth rates and survival rates, which in turn are needed to determine the history of the survivors and year-class strength and recruitment.

EPRI's long-term goal for the Compensatory Mechanisms in Fish Populations (COMPMECH) program is to improve prediction of fish population response to environmental change. Although the emphasis is on predicting responses associated with power generation, we have been careful not to limit our focus to contemporary regulatory concerns. One fundamental assumption in the design of COMPMECH, and the basis for our enthusiasm about supporting the publication of this manual, is the premise that to better understand the dynamics of a population, we need to place a greater emphasis on understanding what is happening at the level of the individual fish.

Given the major role the Electric Power Research Institute (EPRI) perceives for otolith analyses in quantifying and predicting the dynamics of fish populations, it is critical that the techniques for removal, preparation, and analysis of otoliths be developed, compared, and refined as quickly as possible and with appropriate attention to quality control. This manual is an important step in this direction. We compliment the authors on this effort to share the details of their extensive experience.

Jack S. Mattice
Electric Power Research Institute
Palo Alto, California

Robert G. Otto
R.G. Otto and Associates
Arlington, Virginia

Webb Van Winkle
Environmental Sciences Division
Oak Ridge National Laboratory
Oak Ridge, Tennessee
Otolith microstructural studies exist for over 50 families and 135 species of fish and squid. A review of more than 200 investigations showed that a wide variety of techniques have been used in otolith microstructure studies. We foresaw the need of a manual on otolith preparation as microstructure studies become routine in life history investigations. The purpose of our manual is to 1) Permit and encourage fish biologists and fishery scientists to include otolith microstructural analysis in their investigations, 2) List all techniques, materials, and equipment necessary for large-scale aging studies on young fishes, and 3) Provide a basis for standardization of protocols and techniques. To accomplish these aims, detailed methods are provided on otolith removal, cleaning, storage, sectioning, polishing, and etching. We emphasize that there are many alternative methods to those described in the manual. To facilitate review of other laboratories' techniques, tables are provided which sort out published methods by author and species.

Our laboratory's protocols have resulted from our interactions with colleagues, especially those in Japan, and a legacy of graduate students supervised by Dr. John Mark Dean. We acknowledge previous students: Dr. Richard L. Radtke, P.W. Haake, Dr. Charles W. Wilson, Dr. Daniel W. Beckman, Dr. Rudolfo Baldevarona, Mark Foy, and Dr. Edward Cyr, for contributing their expertise to our laboratory. Colleagues who have exchanged technical information through reciprocal visits include Dr. Yasuo Mugiya, Dr. Juro Yamada, Dr. Toru Takita, and Dr. Yutaka Natsukari. We would like to acknowledge the support of the National Science Foundation and the Japanese Ministry of Education who made these exchange visits possible. Dr. Norimitsu Watabe and Dana Dunkelberger who direct and manage the Electron Microscopy Center at the University of South Carolina have collaborated, advised, and assisted in several otolith investigations.

We would like to thank Dr. Nancy Butterworth, Jayne Brim, Dr. James Cowan, Dr. Edward Cyr, Dr. Lisa Kline, Anne B. Miller, and Dr. Susan Sogard for helpful comments on early drafts of this manual, and Kitty Johnson for graphics. We would especially like to thank Anne B. Miller of the Belle W. Baruch Institute for Marine Biology and Coastal Research for her skill, knowledge, assistance, and patience in the technical details involved in the printing of this manual. It would not have been possible for us to have completed this manual without her.

The use of trade names in this publication does not imply endorsement of those products. This manual is technical publication number 1991-01 of the Belle W. Baruch Institute for Marine Biology and Coastal Research.
Foreword
Preface

Chapter 1. Introduction
Panella's Rosetta Stone
Manual objectives
How to use this manual

Chapter 2. Position and Morphology of Otoliths in Fishes
Otolith and vestibular structure
Variation in otolith morphology
Anatomy of the auditory capsule

Chapter 3. Protocol Decisions
Which otolith and section?
Which mounting and embedding media?
Which polishing technique?

Chapter 4. Removal Techniques
Otoliths greater than 300 µm: Macroscopic techniques
Otoliths less than 300 µm: Microscopic techniques

Chapter 5. Cleaning, Handling, and Storage
Otoliths greater than 300 µm
Otoliths less than 300 µm

Chapter 6. Section Preparation
Embedding
Sectioning
General polishing procedure
Polishing otoliths less than 300 µm
Polishing techniques for species with other otolith morphologies
Storage of sections

Chapter 7. Etching Sections
Otolith preparation for SEM examination
Choice of etching agents

Chapter 8. Summary of Laboratory Protocols
Sources of technical error
Precision and efficiency
Labor and material costs

Chapter 9. Recommendations

References
Appendices

Appendix I 57
Systematic Key to Appendix I 71
Foreword to Appendices II-IV 79
Appendix II 81
Appendix III 83
Appendix IV 85